Answer:
calculating displacement.
Explanation:
It's not true that displacement and distance would be the same always. Displacement is always smaller than or equal to distance as it is the smallest path between the initial and final point whereas distance is the measure of the total path covered.
The answer is A. locations by the ocean typically do not get as cold in the winter or as hot in the summer as locations that are located inland.
Answer:
1.93 m/s
Explanation:
Parameters given:
Mass = 4.5g = 0.0045kg
Spring constant = 8.0 N/m
Length of barrel = 13 cm = 0.013m
Frictional force = 0.035N
Compression = 5.8 cm = 0.058m
First, we find the P. E. stored in the spring:
P. E. = ½*k*x²
P. E. = ½ * 8 * 0.058² = 0.013J
Then, we find the work done by the frictional force while the sphere is leaving the barrel of the gun:
Work = Force * distance
The distance here is the length of the barrel.
Work = 0.035 * 0.13 = 0.0046 J
The kinetic energy of the sphere can now be found:
K. E. = P. E. - Work done
K. E. = 0.013 - 0.0046 = 0.0084J
We can now find the speed using the formula for K. E.:
K. E. = ½*m*v²
0.0084 = ½ * 0.0045 * v²
v² = 0.0084/0.00255 = 3.733
=> v = 1.93 m/s
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
Answer:
a) I = 464 kg m², b) K = 631 .6 J, c) v = 8.25 m / s
Explanation:
a) the moment of inertia of point particles is
I = ∑ m_i r_i²
in this case
I = 8 5² + 3 (-2) ² + 7 (-6) ²
I = 464 kg m²
b) The kinetic energy is
K = ½ I w²
K = ½ 464 1.65²
K = 631 .6 J
c) linear and angular velocity are related
v = w r
v = 1.65 5
v = 8.25 m / s