<span>Normal
fault. Normal (extensional ) fault is a
displacement of a rock as a result of rock-mass movement and occurs when the
crust is stretching. Because of the stretching the thickness of the crust is
reduced and the crust or horizontally extended. </span>
Answer:
18.9 <em>N or </em><em>19</em><em> N </em>rounded
Explanation:
m = 0.145 kg
a = 130 m/s^2
F = ma = (0.145 kg)(130 m/s^2) = 18.9 <em>N</em>
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Work = force x distance
= 100N (force) x 0.5m (distance)
= 50J