ANOTHER RUNNING DOG
Explanation:
In the given question it is to find a suitable reference point to describe the motion of dog. Here I could suggest that it is better to compare the dog with another running dog to create the relative speed difference to get a reliable motion variation.
Because the motion of dog is in the linear with respect to the another dog and to the acceleration produced by the dog in the required interval is easy to calculate with respect to another dog which is already in motion.
Hence, I suggest that Motion of dog can be analysed better by analyse the motion variation of dog with another dog running.
True, the definition of "centripetal force" is <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving.</span>
Answer:
Explanation:
Time taken to accelerate to 28 m /s
= 28 / 2 = 14 s
a ) Total length of time in motion
= 14 + 41 + 5
= 60 s .
b )
Distance covered while accelerating
s = ut + 1/2 at²
= 0 + .5 x 2 x 14²
= 196 m .
Distance covered while moving in uniform motion
= 28 x 41
= 1148 m
distance covered while decelerating
v = u - at
0 = 28 - a x 5
a = 5.6 m / s²
v² = u² - 2 a s
0 = 28² - 2 x 5.6 x s
s = 28² / 2 x 5.6
= 70 m .
Total distance covered
= 196 + 1148 + 70
= 1414 m
total time taken = 60 s
average velocity
= 1414 / 60
= 23.56 m /s .
Answer:
Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Explanation:
Given data
Source Frequency fs=600Hz
Length r=1.0m
RPM=100 rpm
The speed of the generator is calculated as:
Substitute the given values
For approaching generator the frequency is calculated as:
On the other hand,for the receding generator,Doppler's effect is expressed as:
Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".