(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
Not entirely sure if you're saying Homologous , but assuming you do , the homologous chromosomes seperate in the anaphase stage of Mitsosis of the Cell cycle
Answer:
the speed of the ball is 10 m/s
Explanation:
Given;
magnitude of exerted force, F = 400 N
mass of the ball, m = 2 kg
radius of the circle, r = 0.5
The speed of the ball is calculated by applying centripetal force formula;

Therefore, the speed of the ball is 10 m/s
1. electrical energy: electrical energy that is caused by moving electrons
2. coolant: a mixture of antifreeze and water that removes excess heat from an internal engine
3. electric compressor: a device that <span>acts as a pump, circulating refrigerant throughout the refrigerator
4. the inside of the fridge and the food becomes colder
5. the coolants becomes a hot, high-pressure gas
6. as coolant transfers thermal energy to the air outside, it turns back into a liquid
</span>