<span>When Kevin pulls his cotton shirt off his body, the electrons get transferred from the shirt (in form of static charges i.e. electrons to the body. So, the shirt becomes positively charged and Kevin’s body becomes negatively charged.
As a result of charge transfer from the shirt to the body, we can hear a crackling sound. or if observed in dark, a sparkle can be seen.</span>
Answer:
he correct answer is V = ER
Explanation:
In this exercise they give us the electric field on the surface of the sphere and ask us about the electric potential, the two quantities are related
ΔV = ∫ E.ds
where E is the elective field and normal displacement vector.
Since E is radial in a spray the displacement vector is also radial, the dot product e reduces to the algebraic product.
ΔV = ∫ E ds
ΔV = E s
since s is in the direction of the radii its value on the surface of the spheres s = R
ΔV = E R
checking the correct answer is V = ER
If you are referring to stars, the answer would then be pressure from the nuclear reactions
The thermal pressure that pushes outward and against the pull of gravity in a star is caused by the nuclear reactions that is happening within the stars core. A lot of energy is released during these reactions which produce thermal pressure. The pressure then pushes outward.
Answer:
q1 = q₂= -3
therefore each sphere has the same charge of -3 untis
Explanation:
The metallic spheres have mobile charge, so when the two spheres come into contact the total charge
Q_total = q₁ + q₂
Q_total = -2 -4
Q_total = -6 units
it is distributed in between the two spheres evenly since the charges of the same sign repel each other.
When the spheres separate each one has
q₁ = -6/2
q1 = q₂= -3
therefore each sphere has the same charge of -3 untis
Yes it can be seen from space. If you go on NASA'S website you can get a bunch of info on how it looks from space