Answer:
hello the figure attached to your question is missing attached below is the missing diagram
answer :
i) 1.347 kW
ii) 1.6192 kW
Explanation:
Attached below is the detailed solution to the problem above
First step : Calculate for Enthalpy
h1 - hf = -3909.9 kJ/kg ( For saturated liquid nitrogen at 600 kPa )
h2- hg = -222.5 kJ/kg ( For saturated vapor nitrogen at 600 kPa )
second step : Calculate the rate of heat transfer in boiler
Q1-2 = m( h2 - h1 ) = 0.008( -222.5 -(-390.9) = 1.347 kW
step 3 : find the enthalpy of superheated Nitrogen at 600 Kpa and 280 K
from the super heated Nitrogen table
h3 = -20.1 kJ/kg
step 4 : calculate the rate of heat transfer in the super heater
Q2-3 = m ( h3 - h2 )
= 0.008 ( -20.1 -(-222.5 ) = 1.6192 kW
Answer:
True
Explanation:
Dual home host - it is referred to as the firewall that is incorporated with two or more networks. out of these two networks, one is assigned to the internal network and the other is for the network. The main purpose of the dual-homed host is to ensure that no Internet protocol traffic is induced between both the network.
The most simple example of a dual-homed host is a computing motherboard that is provided with two network interfaces.
Answer:
The solution to this question is 5.153×10⁻⁴(kmol)/(m²·s)
That is the rate of diffusion of ammonia through the layer is
5.153×10⁻⁴(kmol)/(m²·s)
Explanation:
The diffusion through a stagnant layer is given by

Where
= Diffusion coefficient or diffusivity
z = Thickness in layer of transfer
R = universal gas constant
= Pressure at first boundary
= Pressure at the destination boundary
T = System temperature
= System pressure
Where
= 101.3 kPa
,
,
0.5×101.3 = 50.65 kPa
Δz = z₂ - z₁ = 1 mm = 1 × 10⁻³ m
R =
T = 298 K and
= 1.18
= 1.8×10⁻⁵
= 5.153×10⁻⁴
Hence the rate of diffusion of ammonia through the layer is
5.153×10⁻⁴(kmol)/(m²·s)
Answer:
B
Explanation:
because you can see in the text it is expressing that it is shape