Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Answer:
Explanation:
a) I = ½mR² = ½(19)(0.15²) = 0.21375 kg•m²
b) τ = Fnet(r) = (25 - 12)(0.15) = 1.95 N•m
c) CCW
d) a = τ/I = 1.95 / 0.21375 = 9.12280701... = 9.1 rad/s²
e) CCW
Meters for mass kilograms for volume cubic meters for density kilograms per cubic meter
Answer:
Explanation:
The region around a charged particle where another charged particle experiences a force of attraction or repulsion is called electric field.
The strength of electric field is defined as the force experienced by the unit positive test charge.
E = F / q
Electric field strength is a vector quantity and it is measured in newton per coulomb.
Where, F is the force of attraction or repulsion between the two charges and q is the test charge on which the electric field strength is to be calculated.
The strength of electric field is more if the field is strong. It means more be the electric field strength at a point more be the electric field.