A) the periodic time is given by the equation;
T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
= 6.28 × √0.0673
= 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
thus; frequency = 0.614 Hz
b) The vertical distance, the height is given by
h= 0.66 cos 12
h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
mgh = 1/2mv²
v² = 2gΔh = 2×9.81 × 0.01
= 0.1962
v = 0.443 m/s
c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
= 1/2 × 0.310 × 0.443²
= 0.0304 J
Answer:
The instantaneous speed of the object after the first five seconds is 12.5 m/s.
(C) is correct option.
Explanation:
Given that,
An object starts at rest. Its acceleration over 30 seconds.
We need to calculate the instantaneous speed of the object after the first five seconds
We know that,
Area under the acceleration -time graph gives speed.
According to figure,




Hence, The instantaneous speed of the object after the first five seconds is 12.5 m/s.
Advances in technology used to study and observe atoms lead to the discovery of electrons, protons, nuetrons, and the quarq
Answer:The mechanical advantage of a machine is always less than its velocity ratio.It is because mechanical advantage decreases due to the friction and weight of moving parts of the machine, but the velocity ratio remains constant.
Explanation: hope this helps
Answer:
7.5s
Explanation:
Given parameters:
Velocity = 30m/s
Deceleration = 4m/s²
Unknown:
Time it takes for the car to come to complete rest = ?
Solution:
To solve this problem, we use the kinematics expression below:
v = u + at
Since this is a deceleration
v = u - at
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
v - u = -at
0 - 30 = -4 x t
-30 = -4t
t = 7.5s