Answer:
Higher molar mass compounds will be less soluble than lower molar mass molecules of the same type.
Explanation:
Bigger Mass = slower/less soluble
Small Mass = faster/more soluble
Answer:
Ice is water in its solid form. Ice keeps its shape, even if it's removed from the container. The molecules in ice are locked into place and cannot move or slide past one another, but they do vibrate a little bit.
Explanation:
As the temperature drops or decreases, the water molecules gradually slow down. Eventually they stop moving and simply vibrate back and forth. At this point ice is formed, the solid phase of water. If the temperature is allowed to increase, the molecules will once again begin to vibrate faster and faster.
The energy released when electron move from n=4 to n=3 is 0.66 eV
We know that in an atom energy of nth state is
eV
where n is the energy level
Therefore,

Thus,
= -0.85eV
= -1.51eV
Therefore, total mount of energy released in moving electron from n=4 to n=3 is given by -

= -0.85 - ( -1.51)
= 0.66eV
To know more about energy released in electron transition
brainly.com/question/8384785
#SPJ4
Li2O
Fe(NO3)3
Al2O3
CuCl2
ZnSO4
All you have to do here is make sure your charges are balanced when you write the compound. For example, Iron (III) has a +3 charge, and nitrate has a -1 charge. You need 3 nitrates to match that charge, hence Fe(NO3)3.
Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!