1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
1 year ago
6

Please Help! The thing is in the photo.

Physics
1 answer:
ivolga24 [154]1 year ago
5 0

The reaction 4Al + 3O₂ → 2Al₂O₃ is a synthesis or also called combination reaction because reactants combine to produce a new compound (Option 2).

<h3>What is a synthesis combination reaction?</h3>

In chemistry, a synthesis or combination reaction is any type of chemical reaction in which two or more molecules called reactants combine to produce one or more molecules called products of such reaction.

Therefore, with this data, we can see that a synthesis or combination reaction is a chemical process where two or more molecules combine to produce a new molecule known as a product.

Learn more about synthesis combination reactions here:

brainly.com/question/14703806

#SPJ1

You might be interested in
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
Most geologists accept radiometric dating techniques as valid because
Rus_ich [418]

Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.

Answer: Option C

<u>Explanation:</u>

Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring.  The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.

The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.

7 0
4 years ago
Read 2 more answers
A particular planet has a moment of inertia of 9.74 × 1037 kg ⋅ m2 and a mass of 5.98 × 1024 kg. Based on these values, what is
malfutka [58]

Answer:  A) 6.38(10)^{6} m

Explanation:

The equation for the moment of inertia I of a sphere is:

I=\frac{2}{5}mr^{2} (1)

Where:

I=9.74(10)^{37}kg m^{2} is the moment of inertia of the planet (assumed with the shape of a sphere)

m=5.98(10)^{24}kg is the mass of the planet

r is the radius of the planet

Isolating r from (1):

r=\sqrt{\frac{5I}{2m}} (2)

Solving:

r=\sqrt{\frac{5(9.74(10)^{37}kg m^{2})}{2(5.98(10)^{24}kg)}} (3)

Finally:

r=6381149.077m \approx 6.38(10)^{6} m

Therefore, the correct option is A.

4 0
3 years ago
Ionic compounds have high melting points because a lot of energy is needed to break the bonds between the ions.
velikii [3]
Its true the ionic compounds have a higher melting point
5 0
3 years ago
Read 2 more answers
A certain superconducting magnet in the form of a solenoid of length 0.72 m can generate a magnetic field of 3.5 T in its core w
ira [324]

Answer:

55407

Explanation:

we have given that magnetic field B=3.5 T

current through the coil=90 A

Length of solenoid =0.72 m

we know the formula of magnetic field

B=\frac{\mu _0NI}{l}

so N=\frac{Bl}{\mu _0I}=\frac{3.5\times 0.72}{4\pi \times 10^{-6}\times 90}=55407.277=55407\ turns

so the number of turn in solenoid will be 55407

3 0
3 years ago
Other questions:
  • As Luke rides his bike down a hill, potential energy is converted to kinetic energy. What is this an example of?
    12·1 answer
  • A machine shop worker reports the mass of an aluminum cube as 176 g. If one side of the cube measures 4 cm, what is the density
    15·1 answer
  • What is the change in its velocity, v, during this 0.80-s interval?
    13·1 answer
  • A car slowing down for a stop sign is an example of.....?
    7·2 answers
  • Suppose you are in an elevator. As the elevator starts upward, its speed will increase. During this time when the elevator is mo
    7·1 answer
  • A charge of 50 µC is pushed by a force of 25 µN a distance of 15 m in an electric field. What is the electric potential differen
    6·1 answer
  • The average, year-after-year conditions of temperature, precipitation, winds, and cloud in an area are known as its
    11·1 answer
  • An object that has momentum must have
    14·1 answer
  • A motor exerts a force of 12,00N to lift an elevator 8.0m in 7.0secs what is the power produced by the motor?
    15·1 answer
  • A train sounds its whistle at a constant frequency as it passes by the platform. Compared to the sound emitted by the whistle, t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!