#1
Jill and Scott both moves for 30 minutes
now if Jill cover 5 km distance and Scott cover 10 km distance
now we know that the formula of speed is given as

now we will have
speed of Jill

speed of Scott

so correct answer here is
<em>Scott had the faster speed since he rode at 20 k/h while Jill only traveled 10 km/h.</em>
<em>#2</em>
distance travelled by each car is given as

now here it is given that
time taken by green car

time taken by yellow car

now we can find the speed of two cars

speed of green car

speed of yellow car

so correct answer will be
<em>The yellow car was faster. Yellow traveled at a speed of 50 mph while green was traveling at an average of 40 mph.</em>
D = v^2 / 2ug
d= 3.5^2 / 0,15 x 9.8 m/s^2
the answer should be around 4.2m
hope this helps
Answer:
0.62 rad/s
Explanation:
Angular momentum is conserved.
I₁ ω₁ = I₂ ω₂
where I is moment of inertia and ω is angular velocity.
The total moment of inertia is the sum of the platform's inertia and the boy's.
(I + m r₁²) ω₁ = (I + m r₂²) ω₂
Given I = 1000 kg m², m = 50 kg, r₁ = 4.0 m, r₂ = 3.0 m, and ω₁ = 0.5 rad/s:
(1000 + 50 (4.0)²) (0.5) = (1000 + 50 (3.0)²) ω₂
900 = 1450 ω₂
ω₂ = 0.62 rad/s
Answer:
Thermometers:
1. Mercury thermometer
2. Alcohol thermometer
3. Thermocouple
4. Bimetallic strip
5. Resistance thermometer
Thermometric substances:
1. Mercury
2. Alcohol
3. Thermocouple
4. Bimetallic strip
5. Resistance thermometer
Thermometric properties:
1. Mercury's expansion with temperature
2. Alcohol's expansion with temperature
3. The voltage generated by a thermocouple
4. The change in shape of a bimetallic strip
5. The change in resistance of a resistance thermometer
Explanation:
Give me brainliest if I helped!
<span>reference point is the answer.</span>