Based on the calculation of the resultant of vector forces:
- the resultant force due to the quadriceps is 1795 N
- the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.
<h3>What is the resultant force due to the quadriceps?</h3>
The resultant of more than two vector forces is given by:
where:
- Fₓ is the sum of the horizontal components of the forces
- Fₙ is the sum of the vertical components of the forces
- Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
- Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 480 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55
Fx = -280.6 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55
Fₙ = 1773.1 N
then:
F = √(-280.6)² + ( 1773.1)²
F = 1795.16 N
F ≈ 1795 N
Therefore, the resultant force due to the quadriceps is 1795 N
<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>
From the new information provided:
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 720 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55
Fx = -142.95 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55
Fₙ = 1969.72 N
then:
F = √(-142.95)² + ( 1969.72)²
F = 1974.9 N
F ≈ 1975 N
Therefore, the resultant force due to the quadriceps is 1975 N.
Training and strengthening the vastus medialis results in a greater force of muscle contraction.
Learn more about resultant of forces at: brainly.com/question/25239010
Answer:
120,000
Explanation:
Millimeters to meters calculation-
Multiply by 1,000.
120 x 1,000 = 120,000.
This is the correct answer and formula.
Hope this helps!
Noble gasses ( insert gases)
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet