Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Light will make the object appear “broken” or in an irregular shape.
Refraction is the change in direction of waves.
Answer:
Friction: is used to hang an object on the wall
Force: is what will determine if the object stays in place or not
Explanation:
To solve this problem we will use the work theorem, for which we have that the Force applied on the object multiplied by the distance traveled by it, is equivalent to the total work. From the measurements obtained we have that the width and the top are 14ft and 7ft respectively. In turn, the bottom of the tank is 15ft. Although the weight of the liquid is not given we will assume this value of
(Whose variable will remain modifiable until the end of the equations subsequently presented to facilitate the change of this, in case be different). Now the general expression for the integral of work would be given as

Basically under this expression we are making it difficult for the weight of the liquid multiplied by the area (Top and widht) under the integral of the liquid path to be equivalent to the total work done, then replacing

![W = (14*7*62)\big [15y-\frac{y^2}{2}\big ]^{15}_0](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5Cbig%20%5B15y-%5Cfrac%7By%5E2%7D%7B2%7D%5Cbig%20%5D%5E%7B15%7D_0)
![W = (14*7*62)[15(15)-\frac{(15)^2}{2}]](https://tex.z-dn.net/?f=W%20%3D%20%2814%2A7%2A62%29%5B15%2815%29-%5Cfrac%7B%2815%29%5E2%7D%7B2%7D%5D)

Therefore the total work in the system is 
Increasing the sound intensity by a factor of:
10 raises its level by 10 dB
100 raises its level by 20 dB
1,000 raises its level by 30 dB
10,000 raises its level by 40 dB
therefore, we would be using the 10dB since we are only looking for 13.8 dbSo: 10^1.38 = 23.99 or 24 times.