1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
1 year ago
9

A 1,200 kg car accelerates at 3 m/s2. What net force is the car experiencing during thisacceleration?0 3600 NO 2000 N0 2400 NOON

Physics
1 answer:
Mama L [17]1 year ago
5 0

m = mass = 1,200 kg

A = acceleration = 3 m/s^2

Apply Newton's second law:

Force = mass x acceleration

F = 1,200 x 3 =3600 N

The net force the car experiences is 3600 N

You might be interested in
What two main gasses are exchanged during the process of breathing??
Zina [86]
Oxygen and carbon dioxide
4 0
3 years ago
Harmfful effect of earthquake
Snowcat [4.5K]

Answer:

Death, Destruction, Loss of home

5 0
3 years ago
Read 2 more answers
This type of water occurs as a liquid resource that is dispersed through numerous holes, pores, fractures, and cavities in bodie
777dan777 [17]

Answer:

C

Explanation:

Although this may seem surprising, water beneath the ground is commonplace. Usually groundwater travels slowly and silently beneath the surface, but in some locations it bubbles to the surface at springs. The products of erosion and deposition by groundwater were described in the Erosion and Deposition chapter.

Groundwater is the largest reservoir of liquid fresh water on Earth and is found in aquifers, porous rock and sediment with water in between. Water is attracted to the soil particles and capillary action, which describes how water moves through a porous media, moves water from wet soil to dry areas.

Aquifers are found at different depths. Some are just below the surface and some are found much deeper below the land surface. A region may have more than one aquifer beneath it and even most deserts are above aquifers. The source region for an aquifer beneath a desert is likely to be far from where the aquifer is located; for example, it may be in a mountain area.

The amount of water that is available to enter groundwater in a region is influenced by the local climate, the slope of the land, the type of rock found at the surface, the vegetation cover, land use in the area, and water retention, which is the amount of water that remains in the ground. More water goes into the ground where there is a lot of rain, flat land, porous rock, exposed soil, and where water is not already filling the soil and rock.

The residence time of water in a groundwater aquifer can be from minutes to thousands of years. Groundwater is often called “fossil water” because it has remained in the ground for so long, often since the end of the ice ages.

8 0
3 years ago
Read 2 more answers
A child of mass 40.0 kg is in a roller coaster car that travels in a loop of radius 7.00 m. at point a the speed of the car is 1
pav-90 [236]
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part A
For point A we have:
F_a=F_cf-F_g
In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
F_a=m\frac{v^2}{r}-mg=179 $N
Part B
At the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
F=F_{cf}\cos(30)-mg=m\frac{v^2}{r}\cos(30)-mg=153.2$N
Part C
The child will stay in place at point A when centrifugal force and force of gravity are in balance:
F_g=F_{cf}\\
mg=m\frac{v^2}{r}\\
gr=v^2\\
v=\sqrt{gr}=8.29\frac{m}{s}

6 0
3 years ago
1. What is the kinetic energy of a 1.75 kg ball travelling at a speed of 54 m/s?
Over [174]

Answer:

We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.

Explanation:

Given

  • Mass m = 1.75 kg
  • Velocity v = 54 m/s

To determine

Kinetic Energy (K.E) = ?

We know that a body can possess energy due to its movement — Kinetic Energy.

Kinetic Energy (K.E) can be determined using the formula

K.E=\frac{1}{2}mv^2

where

  • m is the mass (kg)
  • v is the velocity (m/s)
  • K.E is the Kinetic Energy (J)

now substituting m = 1.75, and v = 54 in the formula

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}\left(1.75\right)\left(54\right)^2

K.E=1458\times 1.75

K.E=2551.5 J

Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.

7 0
3 years ago
Other questions:
  • A 0.060 kg ball hits the ground with a speed of -32m/s. The ball is in contact with the ground for 45 milliseconds and the groun
    6·2 answers
  • HURRY! ILL MARK YOU AS BRAINLIEST, RATE YOU A 5 AND THANK YOU! 50 POINTS!
    9·2 answers
  • An arrow is launched upward with an initial speed of 100 meters per second (m/s). The equations above describe the constant-acce
    9·1 answer
  • How old is the moon!
    6·2 answers
  • Jenny and Betty are having a great time at Busch Gardens riding the Ubanga Banga bumper cars. Jenny, who is traveling southward
    10·1 answer
  • The acceleration due to gravity on the surface of Venus is 8.83 m/s2. An object with a mass of 5.23 kg has what weight on Venus?
    8·1 answer
  • Light from a laser of wavelength λ1 shines normally on a pair of narrow slits separated by distance D. This results in a differe
    15·1 answer
  • What material was the hindenburg made of?
    5·1 answer
  • Dani says, "This classroom is 11 meters long. A meter is longer than a yard, so if I measure the length of this classroom in yar
    9·1 answer
  • A car drives straight down toward the bottom of a valley and up the other side on a road whose bottom has a radius of curvature
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!