An element refers to a collection of atoms having the same number of protons and electrons (an atomic number). In each element there is a different atomic number due to a different amount of protons in the nucleus.
An isotope is a variation of an element that contains a different number of neutrons, therefore adding weight to the atom.
An ion is a charged atom, and its charge shows how many electrons it needs to gain or lose in order to become stable.
This is where we have to admit that gravitational potential energy is
one of those things that depends on the "frame of reference", or
'relative to what?'.
Potential energy = (mass) x (gravity) x (<em>height</em>).
So you have to specify <em><u>height above what</u></em> .
-- With respect to the ground, the ball has zero potential energy.
(If you let go of it, it will gain zero kinetic energy as it falls to
the ground.)
-- With respect to the floor in your basement, the potential energy is
(3) x (9.8) x (3 meters) = 88.2 joules.
(If you let go of it, it will gain 88.2 joules of kinetic energy as it falls
to the floor of your basement.)
-- With respect to the top of that 10-meter hill over there, the potential
energy is
(3) x (9.8) x (-10) = -294 joules
(Its potential energy is negative. After you let go of it, you have to give it
294 joules of energy that it doesn't have now, in order to lift it to the top of
the hill <em>where it will have zero</em> potential energy.)
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Balance and beaker of water. The balance will measure mass and the beaker will measure the volume when you take the initial volume without the key subtracting that value from the value with the key in the beaker
Answer:
The magnitude = 10.30 m
The direction of the vector proceeds at angle of 119.05°
Explanation:
Given that:
A vector
has component
= -5 m and
= 9 m
The magnitude of vector
can be represented as:
= 
= 
= 
= 
= 10.30 m
If we make
an angle
with y- axis:
Then; tan
= 
tan
= 
tan
= 0.555
= tan⁻¹ (0.555)
= 29.05°
Angle with positive x-axis = 90 +
= 90° + 29.05°
= 119.05°