To calculate the pH of a solution that has a [H3O+] of 7.22x10^-7. You would do the following
pH=-log[H3O+]
pH=-log[7.22x10^-7]
pH=?
Answer:
Chicken nuggets
hope it helps have a nice day
Answer:
In this section, we consider how several of the enumerated powers of Congress under the original Constitution have been interpreted. The Congress shall have Power To lay and collect Taxes, Duties, Imposts and Excises, to pay the Debts and provide for the common Defence and general Welfare of the United States.
Answer:
19.4 g of alum, will be its theoretical yield
Explanation:
The reaction is:
2 Al + 2 KOH + 4 H₂SO₄ + 22H₂O → 3H₂ + 2KAl(SO₄)₂•12H₂O
Let's determine the amount of acid.
M are the moles contained in 1 L of solution or it can be mmoles that are contained in 1 mL of solution
M = mmol /mL
M . mL = mmol
We replace: 8.3 mL . 9.9 M = 82.17 mmoles
We convert to moles: 82.17 mmol . 1 mol / 1000mmol = 0.082 moles
Ratio is 4:2
4 moles of sulfuric acid can make 2 moles of alum
By the way, 0.082 moles of acid may produce ( 0.082 . 2) /4 = 0.041085 moles.
We convert moles to mass:
Molar mass of alum is: 473.52 g/mol.
0.041085 moles . 473.52 g/mol = 19.4 g
Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,

Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm