The loss of electron from an results in the formation of cation represented by the positive charge on the element whereas gaining of electron results in the formation of anion represented by the negative charge on the element.
The alkali earth metal beryllium (
) belongs to the second group of the periodic table. The ground state electronic configuration of
is:
From the electronic configuration it is clear that it has 2 valence electrons in its valence shell (
).
After losing all valence electrons that is 2 electrons from
orbital. The electronic configuration will be:

Since, lose of electron is represented by positive charge on the element symbol. So, the beryllium will have +2 charge on its symbol as
.
Hence, beryllium will have 2+ charge on it after losing all its valence electrons in the chemical reaction.
The answer is A :) your welcome hope this helps
Answer:
The net energy is 2.196 eV
Explanation:
Basically, the energy of an atom increases when it absorbs a photon. In addition, the wavelength of the emitted photon is longer such that the atom absorbed a net energy in the process.
Using:
ΔE = h*c*(1/λ
- 1/λ
)
where:
ΔE is the net energy in eV (electron-volt). 1 eV is equivalent to 1.602*
J.
h = 4.135*
eVs
c = 3*
m/s
λ
= 300 nm = 300*
m
λ
= 640 nm = 640*
m
Thus:
ΔE = 4.135*
eVs*3*
m/s*(
)
ΔE = 4.135*
*3*
*1.77*
eV = 2.196 eV
Heat energy is required.
In distillation, the solution is first heated, where heat energy is required, such as using a bunsen burner.
When the solution is heated, the water may reach its boiling point and evaporate. However, salt does not. When water molecules evaporates, it travels through a condenser that cools it down into liquid again. Therefore we get pure water. Salt is also obtained in the original beaker.
Therefore to first start this process, heat energy is required.