Answer:
Cabon-12 has same average atomic weight and mass number.
Explanation:
carbon-12 has average atomic weight 12 amu and mass number of 12.
amu represents average of mass of a nucleon.
As carbon-12 has same average atomic mass and mass number therefore carbon-12 is a good standard to determine average mass of a nucleon.
Again, abundance of carbon-12 isotope is almost equal to 99%. Therefore fluctuation of average atomic weight from 12 amu is very very low.
So, carbon-12 is taken as a standard to determine mass of a nucleon.
Hence atomic mass of carbon-12 is 12 amu.
They all have 2 elections in the outer S orbital, and 4 electrons in the P orbitals.
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>
Answer:
Each molecule contains one atom of A and one atom of B. The reaction does not use all of the atoms to form compounds.
A + B ⟶ Product
Particles: 6 8 6
If six A atoms form six product molecules, each molecule can contain only one A atom.
The formula of the product is ABₙ.
If n = 1, we need six atoms of B.
If n = 2, we need 12 atoms of B. However, we have only eight atoms of B, so the formula of the product must be AB.
Thus, 6A + 6B ⟶ 6AB, with two B atoms left over.
Explanation:
Credit goes to @znk
Hope it helps you :))
Answer: The system will try and offset the change.
Explanation: Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in a direction to minimize the effect.
Thus if temperature is increased, the reaction will shift in a direction where temperature is decreasing and vice versa. Similarly if pressure is increased, the reaction will shift in a direction where pressure is decreasing and vice versa.