Answer:
The emf, electric field and the current in the wire are 10 V, 3.57 V/m and 1.43 A.
Explanation:
Given that,
Resistance = 7 ohms
Length = 2.8 m
Time t =0.2
We need to calculate the change in magnetic flux
Using formula of induced emf

Put the value into the formula


We need to calculate the electric field in the wire
Using formula of electric field



We need to calculate the current in the wire,
Using formula of ohm's law


Put the value into the formula


Hence, The emf, electric field and the current in the wire are 10 V, 3.57 V/m and 1.43 A.
Answer:
ANS : .Energy spent on spraying =
Explanation:
<em>Given:</em>
- <em>Radius of mercury = 1cm initially ;</em>
- <em>split into
drops ;</em>
Thus, volume is conserved.
i.e ,

- Energy of a droplet =
Δ
Where ,
- <em>T is the surface tension </em>
- <em>ΔA is the change in area</em>
Initial energy 
Final energy 
∴ .Energy spent on spraying = 
ANS : .Energy spent on spraying =
Answer:
A. 59.4
Explanation:
The refractive index of the glass, n₁ = 1.50
The angle of incidence of the light, θ₁ = 35°
The refractive index of air, n₂ = 1.0
Snell's law states that n₁·sin(θ₁) = n₂·sin(θ₂)
Where;
θ₂ = The angle of refraction of the light, which is the angle the light will have when it passes from the glass into the air
Therefore;
θ₂ = arcsin(n₁·sin(θ₁)/n₂)
Plugging in the values of n₁, n₂ and θ₁ gives;
θ₂ = arcsin(1.50 × sin(35°)/1.0) ≈ 59.357551° ≈ 59.4°
The angle the light will have when it passes from the glass into the air, θ₂ ≈ 59.4°.
Answer:
Hurricanes hit almost everywhere but I will say the gulf of for your fourth answer.
Explanation:
you might be right on the north pacific but here is another option.
The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s