Answer:
I think it is D but don't count on it
While the boy is sitting on the chair it creates a force downward on the chair and therefore the chair takes it and gives off the equal amount of force. So while he is putting force downward the chair is putting the same force upward.
Answer:
Vibrations of electric and magnetic fields.
Vibration of air particles
Vibration of the water particles.
Explanation:
We have here two groups of waves. Electromagnetic wave and mechanical waves.
- For the first one, electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields.
- For the second group, mechanical waves as a sound, for instance, energy is transferred through vibration of air particles or particles of a solid through which the sound travels. Or In water waves, energy is transferred through the vibration of the water particles.
I hope it helps you!
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
Answer:
4
Explanation:
As you can see in the free body diagram there are 4 forces acting on the body.