Answer:
a) ΔGrxn = 6.7 kJ/mol
b) K = 0.066
c) PO2 = 0.16 atm
Explanation:
a) The reaction is:
M₂O₃ = 2M + 3/2O₂
The expression for Gibbs energy is:
ΔGrxn = ∑Gproducts - ∑Greactants
Where
M₂O₃ = -6.7 kJ/mol
M = 0
O₂ = 0

b) To calculate the constant we have the following expression:

Where
ΔGrxn = 6.7 kJ/mol = 6700 J/mol
T = 298 K
R = 8.314 J/mol K

c) The equilibrium pressure of O₂ over M is:

For this system, we use Dalton's law of partial pressures where the total pressure of a gas mixture is said to be equal to the sum of the partial pressures of the gases. The partial pressure of each gas would be calculated by the product of the mole fraction and the original pressure of the gas. We do as follows:
Total pressure = x1P1 + x2P2
Total pressure = (2.0 / 7.0 )(3.5) + (1.5/7.0)(2.6)
Total pressure = 1.56 atm
The answer is G Container 2
.
Hope this helps
.
Zane
.
<span> esskeetit</span>
Answer:
it is a replacement reaction