Answer:
negative charge
Explanation:
Neutrons have no charge, protons have positive charge, and electrons have a negative charge
Answer:
Avogadro's number is the number of particles in one mole of anything. In this context, it is the number of atoms in one mole of an element. It's easy to find the mass of a single atom using Avogadro's number. Simply divide the relative atomic mass of the element by Avogadro's number to get the answer in grams.
substitute: <span><span>t<span>1/2</span></span>=<span><span>ln(2)</span>k</span>→k=<span><span>ln(2)</span><span>t<span>1/2</span></span></span></span>
Into the appropriate equation: <span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−kt</span></span></span>
<span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−<span><span>ln(2)</span><span>t<span>1/2</span></span></span>t</span></span></span>
<span>[A<span>]t</span>=(250.0 g)∗<span>e<span>−<span><span>ln(2)</span><span>3.823 days</span></span>(7.22 days)</span></span>=67.52 g</span>
Is this a question or a statement?
Answer:
81 °C
Explanation:
This is a calorimetry question so a few things you will need for this. The calorimetry equation q=mcΔT & the specific heat of water (4.2J/g•°C). Other definitions are:
q = heat added/released by a sample
m = mass of sample
c=specific heat of sample
ΔT = change in temperature
from here we can rearrange the equation to state:
q/(mc) = ΔT
1200J/((20.0g)(4.2J/g•°C)) = ΔT
14°C = ΔT
If the starting temperature was 95.0°C and we know that the temperature was cooled by 14°C then the final temperature of the water would be 81.