Answer:
28 g CO
Explanation:
First convert grams to moles.
1 mole C = 12.011 g (I'm just going to round to 12 for the sake of this problem)
12 g C •
= 1 mol C
1 mol O = 15.996 g (I'm just going to round to 16)
16 g O •
= 1 mol O
So the unbalanced equation is:
->
(the oxygen has a 2 subscript because it is part of HONClBrIF meaning when not in a compound these elements appear in pairs - called diatomic elements)
The balanced equation is:
-> 
However, carbon is the limiting reactant in this equation and two moles cannot react because only 12 g (1 mole) are present. Therefore, use the equation
->
.
1 mole of CO is formed, therefore 12 g + 16 g = 28 g CO.
The equilibrium expression shows the ratio
between products and reactants. This expression is equal to the concentration
of the products raised to its coefficient divided by the concentration of the
reactants raised to its coefficient. The correct equilibrium expression for the
given reaction is:<span>
<span>H2CO3(aq) + H2O(l)
= H3O+(aq) + HCO3-1(aq)
Kc = [HCO3-1] [H3O+] / [H2O] [H2CO3]</span></span>
860 mL.
<h3>Explanation</h3>
Separate this process into two steps:
- Cool the balloon from 305 K to 265 K.
- Reduce the pressure on the balloon from 0.45 atm to 0.25 atm.
What would be the volume of the balloon after each step?
After Cooling the balloon at constant pressure:
By Charles's Law, the volume of a gas is directly related to its temperature in degrees Kelvins.
In other words,
,
where
and
are volumes of the same gas.
and
are the temperatures (in degrees Kelvins) of that gas.
Rearranging,
.
The balloon ended up with a lower temperature. As a result, its volume drops:
.
After reducing the pressure on the balloon at constant temperature:
By Boyle's Law, the volume of a gas is inversely proportional to the pressure on this gas.
In other words,
,
where
and
are volumes of the same gas.
and
are the pressures on this gas.
Rearranging,
.
There's now less pressure on the balloon. As a result, the balloon will gain in volume:
.
The final volume of the balloon will be
.
Potassium sulfite<span> (K</span>₂<span>SO</span>₃<span>)
hope this helps!</span>