1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
1 year ago
14

a hot pot of water is set on the counter to cool. after a few minutes it has lost 755 j of heat energy. how much heat energy has

the surrounding air gained?
Physics
1 answer:
velikii [3]1 year ago
5 0

The heat energy the surrounding air gained is <u>755 j.</u>

Energy is a quantitative property given to a body or physical system and can be identified as work being done in the form of heat and light. Energy is Conserved - The law of conservation of energy states that energy can be transformed into form, but cannot be created or destroyed. Energy is the ability to do work. It can exist in electrical, kinetic, thermal, electrical, chemical, nuclear, or other forms.

<u>Concept:-</u>

Since the energy is always conserved, the energy lost by the hot water is gained bt the surrounding

- energy lost  = + energy gained by the surrounding

- 755 j = + <u>755 j</u>

<u />

Energy exists in many forms. Examples include light energy, thermal energy, mechanical energy, gravitational energy, electrical energy, acoustic energy, chemical energy, and nuclear or atomic energy. Each form can be transformed or changed into other forms.

Learn more about energy here:-brainly.com/question/13881533

#SPJ1

You might be interested in
g a small smetal sphere, carrying a net charge is held stationarry. what is the speed are 0.4 m apart
weeeeeb [17]

Complete Question

A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.

Answer:

The value v_2  =  4 \sqrt{10} \  m/s

Explanation:

From the question we are told that

   The  charge on the first sphere is  q_1  =  2\mu C  =  2*10^{-6} \  C

    The charge on the second sphere is  q_2 =  8 \mu C = 8*10^{-6} \  C

     The  mass of the second charge is m  =  1.50 \  g  =  1.50 *10^{-3} \ kg

      The  distance apart is  d =  0.4 \  m

      The  speed of the second  sphere is  v_1  =  20 \  ms^{-1}

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.8 \  m is mathematically represented

     Q =  KE + U

Here KE   is  the kinetic energy which is mathematically represented as

     KE  =  \frac{1 }{2}  m (v_1)^2

substituting value

     KE  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (20 )^2

     KE  =  0.3 \  J

And  U is  the  potential  energy which is mathematically represented as

        U  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.8 }

      U  =  0.18 \  J

So

       Q =  0.3 +  0.18

       Q =  0.48 \  J

Generally the total energy possessed by when q_2 and  q_1 are separated by 0.4 \  m is mathematically represented

         Q_f =  KE_f + U_f

Here KE_f is  the kinetic energy which is mathematically represented as

     KE_f  =  \frac{1 }{2}  m (v_2^2

substituting value

     KE_f  =  \frac{1 }{2}  * ( 1.50 *10^{-3}) (v_2 )^2

     KE_f  =  7.50 *10^{ -4} (v_2 )^2

And  U_f is  the  potential  energy which is mathematically represented as

        U_f  =  \frac{k *  q_1 *  q_2  }{d }

substituting values

       U_f  =  \frac{9*10^9 *  2*10^{-6} * 8*10^{-6}  }{0.4 }

      U_f  =  0.36 \  J

From the law of energy conservation

     Q =  Q_f

So

    0.48 =  0.36 +(7.50 *10^{-4} v_2^2)

   v_2  =  4 \sqrt{10} \  m/s

     

   

6 0
3 years ago
What is radioactive dating? How is it used to determine age of something?
Liono4ka [1.6K]

Answer:

Technique of comparing abundance ratio between radioactive isotopes to a reference isotope to determine the age of a material called radioactive dating. It determines the age by having a more abundance of isotopes in the cellular being.

6 0
2 years ago
A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a
vodka [1.7K]

Answer:

51.96 m/s^-1

Explanation:

a) see the attachment

b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be  

v_ox=v_o*cosФ

       =60*cos (30)

      = 51.96 m/s^-1

3 0
3 years ago
Read 2 more answers
The gravitational force,F, on a rocket at a distance,r, from the center of the earth isgiven byF=kr2wherek= 1013N·km2. (Newton·k
Brrunno [24]

Answer:

The gravitational force changing velocity is

\frac{dF}{dt}=-8\frac{N}{s}

Explanation:

The expression for the gravitational force is

F=\frac{k}{r^{2}}\\\\k=10x10^{13} N*km^{2}\\\\r=10x10^{4} km\\\\V=0.4 \frac{km}{s}

Differentiate the above equation

\frac{dF}{dt}=\frac{k}{r^{2}}\\\frac{dF}{dt}=k*r^{-2}\\\frac{dF}{dt}=-2*k*r^{-3} \frac{dr}{dt}\\\frac{dF}{dt}=\frac{-2k}{r^{3}}\frac{dr}{dt}

The velocity is the distance in at time so

V=\frac{dr}{dt}=0.4 \frac{km}{s}

\frac{dF}{dt}=\frac{-2*k}{r^{3}}*0.4\\\frac{dF}{dt}=\frac{-8*10x^{13}N*km^{2} }{(10x10^{4}) ^{3}} \\\frac{dF}{dt}=\frac{-8x10^{12} }{1x10^{12}}

\frac{dF}{dt}=-8\frac{N}{s}

8 0
3 years ago
What is the efficiency (w/qh) of an ideal carnot heat engine operating between a hot region at t= 400 k and a cold one at t= 300
Vinvika [58]
The efficiency of an ideal Carnot heat engine can be written as:
\eta = 1-  \frac{T_{cold}}{T_{hot}}
where
T_{cold} is the temperature of the cold region
T_{hot} is the temperature of the hot region

For the engine in our problem, we have T_{cold}=300 K and T_{hot}=400 K, so the efficiency is
\eta= 1 - \frac{300 K}{400 K}=0.25
4 0
3 years ago
Other questions:
  • Anyone tell me what is the physics​
    10·1 answer
  • What physical property of light changes and causes the light to refract, or bend?
    11·1 answer
  • a type of rock that forms when particles from other rocks or the remains of plants and animals are pressed and cemented together
    14·1 answer
  • I need these ASAP 20 POINTS!!
    15·1 answer
  • All waves transfer____. Energy weight velocity mass
    9·1 answer
  • Which theory of light is the photon more consistent with
    6·1 answer
  • I shoot a bullet up at 270 m/s. How long does it fly for????
    9·1 answer
  • 1000 kg car takes travels on a circular track having radius 100 m with speed 10 m/s. What is the magnitude of the acceleration o
    11·1 answer
  • What parameters we control through a valve?
    14·1 answer
  • The amplitude of the wave in the picture below is... Select one: a. 1 cm b. 1.5 cm c. 2 cm d. 3 cm
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!