Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
Answer:
the solubility of CaCO3 is 0.015g/l 25 °C
is favored at equilibrium
Explanation:
The Ksp of calcium carbonate in water at 25 °C is 2.25 x 10-8. CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq) What is favored at equilibrium?
solubility is the property of a solute to dissolve in a solvent(liquid, gas ) to form a solution(soution can be saturated ,unsaturated, or supersaturated)
CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq)
in partial dissociation , we can say
2.25x 10^-8=
let Ca^2+=CO3^-2=S
2.25x10^-8=S*S
S^2=2.25x10^-8
S=0.00015mol/L
Converting that to g/l
the relative molecular mass of CaCO3=100g/mol
0.00015*100g/mol
0.015g/l
the solubility of CaCO3 is 0.015g/l @room temperature
is favored at equilibrium
Answer:
Don't post any question if isn't related to the topic or to your homework or assignment.
Explanation:
Answer:
i going to be aniston i would say take a gess