1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
8

A train starts at v=10m/s and accelerates at 1m/s2 for 5s. Its final speed is *

Physics
1 answer:
ad-work [718]3 years ago
3 0

Answer:

D) 15 m/s

Explanation:

v = u + at

v = 10 m/s + 1 m/s²(5 s)

v = 15 m/s

You might be interested in
Ashley is flying a plane that has to reach a gradient of 360m/km in order to take off and not crash. Her goal is to travel from
KengaRu [80]

Answer:

She is likely to crash because her flight gradient is lesser than the flight gradient required gradient to avoid crashing

Explanation:

The given parameters are;

The required gradient of the plane Ashley is flying needs to reach in order to take off and not crash = 360 m/km

The initial elevation of the plane Ashley is flying = Sea level = 0 m

The goal Ashley intends to make = Elevation of 1000 m at 2.8 km. distance

∴ Ashley's goal = Traveling from sea level to 1000 m at 2.8 km horizontal distance

We have;

The gradient  = Rate of change of elevation/(Horizontal distance)

Therefore;

The gradient of Ashley's flight = (1000 - 0)/(2.8 - 0) = 357.143 m/km

The gradient of Ashley's flight ≈ 357.143 m/km which is lesser than the required 360 m/km in order to take off and not crash, therefore, she will crash.

6 0
3 years ago
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. Th
NikAS [45]

Answer:

M = 0.730*m

V = 0.663*v

Explanation:

Data Given:

v_{bullet, initial} = v\\v_{bullet, final} = 0.516*v\\v_{paper, initial} = 0\\v_{paper, final} = V\\mass_{bullet} = m\\mass_{paper} = M\\Loss Ek = 0.413 Ek

Conservation of Momentum:

P_{initial} = P_{final}\\m*v_{i} = m*0.516v_{i} + M*V\\0.484m*v_{i} = M*V .... Eq1

Energy Balance:

\frac{1}{2}*m*v^2_{i} = \frac{1}{2}*m*(0.516v_{i})^2 + \frac{1}{2}*M*V^2 + 0.413*\frac{1}{2}*m*v^2_{i}\\\\0.320744*m*v^2_{i} = M*V^2\\\\M = \frac{0.320744*m*v^2_{i} }{V^2}  ....... Eq 2

Substitute Eq 2 into Eq 1

0.484*m*v_{i} = \frac{0.320744*m*v^2_{i} }{V^2} *V  \\0.484 = 0.320744*\frac{v_{i} }{V} \\\\V = 0.663*v_{i}

Using Eq 1

0.484m*v_{i} = M* 0.663v_{i}\\\\M = 0.730*m

7 0
3 years ago
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
4 years ago
Scientists have discovered convection currents inside Earth. Explain how these convection currents move and what layer(s) they o
fgiga [73]

Answer:

I don't know what to do

Explanation:

So

7 0
4 years ago
Read 2 more answers
Which unit of measurement is included in the International System of Unit! (si)?
ozzi

Answer:

See the explanation below

Explanation:

There are several measures for the international system of measures. Let's name some and their representation symbol.

meter = [m]

time = [s] = seconds

mass = [kg] = kilograms

Temperature = [°C] = celcius degrees

Power = [W] = watts.

Force = [N] = Newtons

3 0
3 years ago
Other questions:
  • How many miles can you get on one tank of gas if your tank holds 18 gallons and you get 22 miles per
    7·2 answers
  • An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the plane were to fly in the same 500 m circl
    5·1 answer
  • The energy levels the electron can occupy in the H atom can be calculated using the energy level equation. A H atom with an elec
    10·1 answer
  • Triton is a moon of Neptune. It has a
    10·1 answer
  • A spaceprobe in outer space is flying with a constant speed of 1.530 km/s. The probe has a payload of 1363.0 kg and it carries 3
    9·1 answer
  • What is Newton's second law of motion? ​
    10·2 answers
  • What mass of water will change its temperature by 20.0 degrees Celsius when 515 J of heat is added to it? the specific heat of w
    10·1 answer
  • Which scientist stated that all cells arise from preexisting cells?
    6·2 answers
  • HELP WILL GIVE BRAINLIEST OF CORRECT
    10·2 answers
  • Which of the following statements might be used to defend the Act of 1848​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!