A pendulum is probably the most common showing of this example. As the pendulum swings down, it converts its potential energy (height) into kinetic energy (velocity). At the lowest point the kinetic energy is the highest and the potential is the lowest. At the highest point in its swing the velocity is zero so the kinetic energy is zero and the potential energy is at a maximum (greatest height).
By definition of average acceleration,
<em>a</em> = (20 m/s - 33.1 m/s) / (4.7 s) ≈ -2.78 m/s²
Vertically, the car is in equilibrium, so the net force is equal to the friction force in the direction opposite the car's motion:
∑ <em>F</em> = (1502.7 kg) (-2.78 m/s²) ≈ -4188.38 N ≈ -4200 N
If you just want the magnitude, drop the negative sign.
a) earth acts as a lange magnetic. Therefore when a magnet is hanging freely, it points towards the magnetic poles (like a compass)
b) like poles repel and unlike poles attracts. We can conclude with repulsion that poles are same
c) In our everyday experience aluminum doesn't stick to magnets. (under normal circumstances aluminum isn't visibly magnetic)