Answer:
c) The slope is not constant and increases with increasing time.
Explanation:
The equation for the position of this particle (starting from rest is)

We can take derivative of this with respect to time t to get the equation of slope:

As time t increase, the slope would increases with time as well.
The coin's acceleration is <u>0.37 m/s²</u>
Acceleration is the rate of change of the velocity of an item with appreciation to time. Accelerations are vector portions. The orientation of an item's acceleration is given by the orientation of the net pressure appearing on that object.
<u>Calculation:-</u>
<u />
V² = U -2aS
a = U/2S
= 2/2×2.7
= <u>0.37 m/s²</u>
Acceleration is the charge at which velocity modifications with time, in terms of each speed and route. A factor or an object moving in a straight line is accelerated if it quickens or slows down. movement on a circle is extended despite the fact that the rate is consistent because the course is continually changing.
Learn more about acceleration here:- brainly.com/question/29110429
#SPJ9
Ewan ko po ehh sorri po’ hahaha thanks me
Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s
Answer:
The bigger one. Ignoring air resistance, they will fall at the same speed, but the bigger one will hit first because it sticks out lower.
Explanation: