Answer:
10.87 g of Ethyl Butyrate
Solution:
The Balance Chemical Equation is as follow,
H₃C-CH₂-CH₂-COOH + H₃C-CH₂-OH → H₃C-CH₂-CH₂-COO-CH₂-CH₃ + H₂O
According to equation,
88.11 g (1 mol) Butanoic Acid produces = 116.16 g (1 mol) Ethyl Butyrate
So,
8.25 g Butanoic Acid will produce = X g of Ethyl Butyrate
Solving for X,
X = (8.25 g × 116.16 g) ÷ 88.11 g
X = 10.87 g of Ethyl Butyrate
14. a. Acidic
15. b. Weaker
16. d. Dilute and weak
Explanation:
14. Which type of the solution is one with the pH of 3?
Solution with pH from 1 to 7 are acidic, equal to 7 is neutral and from 7 to 14 basic. The solution with the pH equal to 3 is <u>acidic</u>.
15. The smaller the value of the base dissociation constant (Kb), the <u>weaker</u> the base.
The dissociation reaction of a base (B) is:
B + H₂O → BH⁺ + OH⁻
Kb is defined as:
Kb = ( [BH⁺] × [OH⁻] ) / ( [B] × [H₂O] )
The potency of the base depends on the concentration of the hydroxide ion [OH⁻], so if the Kb ratio is small it means that the concentration of hydroxide ion is smaller so the base will be <u>weaker</u>.
16. A 0.39 M solution of an acid that ionizes only slightly in solution would be termed <u>dilute and weak</u>.
The acid is weak because is only slightly ionizing in solution. The therm diluted is a little bit arbitrarily because we ask yourself "diluted in respect with what"? I would characterize the acid to be diluted at a concentration of 1 M and concentrated at a concentration of 10 M.
Learn more about:
pH
brainly.com/question/1402522
#learnwithBrainly
Answer:
The answer to your question is below
Explanation:
a) HCl 0.01 M
pH = -log [0.01]
pH = - (-2)
pH = 2
b) HCl = 0.001 M
pH = -log[0.001]
pH = -(-3)
pH = 3
c) HCl = 0.00001 M
pH = -log[0.00001]
pH = - (-5)
pH = 5
d) Distilled water
pH = 7.0
e) NaOH = 0.00001 M
pOH = -log [0.00001]
pOH = -(-5)
pH = 14 - 5
pH = 9
f) NaOH = 0.001 M
pOH =- log [0.001]
pOH = 3
pH = 14 - 3
pH = 11
g) NaOH = 0.1 M
pOH = -log[0.1]
pOH = 1
pH = 14 - 1
pH = 13
Answer:
The concentration of H₃PO₄ will increase.
Explanation:
H₃PO₄(aq) + H₂O(l) ⇄ H₂PO₄⁻(aq) + H₃O⁺(aq)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If we add more H₂PO₄⁻, the position of equilibrium will move to the left to get rid of the added H₂PO₄⁻.
The concentration of H₃PO₄ will increase.