1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
1 year ago
5

how does a sprinter sprint what is the forward force on a sprinter as she accelerates. where does that force come from

Physics
1 answer:
NARA [144]1 year ago
8 0

On the starting blocks, sprinters use their feet to push backward. The blocks respond by pressing forward with a force equal to this with their feet.

<h3>What drives the sprinter forward?</h3>

Vertical forces must be larger than the pull of gravity in order to assist the sprinter in moving forward as gravity is pushing him or her downward. The propulsive force is the force that propelled the runner forward.

<h3>Basketball players must jump straight up into the air, but how?</h3>

An interaction diagram and a free-body diagram should be included in your explanation. The player pushes down on the ground, which pushes up against him in return. As a result of his push being stronger than gravity, the player accelerates upward.

To know more about sprinter forward visit:-

brainly.com/question/14310782

#SPJ4

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
An engineer wishes to design a curved exit ramp for a toll road in such a way that a car will not have to rely on friction to ro
Dafna11 [192]

To solve this problem we will make a graph that allows us to understand the components acting on the body. In this way we will have the centripetal Force and the Force by gravity generating a total component. If we take both forces and get the trigonometric ratio of the tangent we would have the angle is,

T_x = nsinA = \frac{mv^2}{r}

T_y = ncosA = mg

Dividing both.

tan A = \frac{v^2}{rg}

tan A = \frac{11.7^2}{50*9.8}

A = tan^{-1} (0.279367)

A = 15.608\°

Therefore the angle that should the curve be banked is 15.608°

7 0
3 years ago
How does the sun’s gravitational attraction impact Earth’s motion?
Tasya [4]
The Sun's gravitational pull keeps our planet orbiting the Sun <span>in a nice nearly-circular orbit.</span>
7 0
2 years ago
A motorboat traveling with a current can go 160 km in 4 hours. against the current it takes 5 hours to go the same distance. Fin
MatroZZZ [7]
<h2>Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.</h2>

Explanation:

Let speed of motor boat be m and speed of current be c.

A motorboat traveling with a current can go 160 km in 4 hours.

   Distance = 160 km

   Time = 4 hours

    Speed = m + c

   We have

            Distance = Speed x Time

            160 = (m+c) x 4

            m + c = 40     --------------------- eqn 1

Against the current it takes 5 hours to go the same distance.

   Distance = 160 km

   Time = 5 hours

    Speed = m - c

   We have

            Distance = Speed x Time

            160 = (m-c) x 5

            m - c = 32     --------------------- eqn 2

eqn 1 + eqn 2

           2m = 40 + 32

             m = 36 km/hr

Substituting in eqn 1

               36 + c = 40

                      c = 4 km/hr

Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.

3 0
3 years ago
Choose all that apply. Solids, liquids, and gases can be distinguished by their:
vodomira [7]
I believe its by there shape
8 0
3 years ago
Read 2 more answers
Other questions:
  • You will begin with a relatively standard calculation.Consider a concave spherical mirror with a radius of curvature equal to 60
    11·1 answer
  • How do mass and speed affect kinetic energy?
    12·1 answer
  • Which of the following is NOT one of the three keys to keeping water clean? Reduction of pollutants Effective cleanup of oil and
    8·2 answers
  • One way to decrease the inertia of an object is to
    8·2 answers
  • A copper transmission cable 170 km long and 10.0 cm in diameter carries a current of 100 A .
    14·1 answer
  • The equation for distance is d = st. If a car has a speed of 77.0 m/s and travels for 45.0 seconds, how far does it go?
    6·2 answers
  • A cylinder contains 12liters of O2 at 20°c and 15atm. The temperature is raised to 35°c and volume is reduced to 8.5L. Calculate
    11·1 answer
  • A moving rope (parallel to the slope) is used to pull skiers up the mountain. If the slope of the hill is 37" and friction is ne
    13·1 answer
  • An atom has 1.5x10^19 free electrons.
    12·1 answer
  • A body weighs less inside water​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!