Answer:
The speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
Explanation:
Let u is the initial speed of the launch. Using first equation of motion as :

a=-g

The velocity of the shell at launch and 5.4 s after the launch is given by :

So, the speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.
<span>If you spin fast enough, the impact of the glad will break the blade of grass before it can move out of the way. In the same way that if you kick an empty can, it will move out of the way, but if you shoot it with a gun, the bullet will cut through the can before it can move. Keep in mind a mower blade turns at probably 10,000 RPMs.</span>
Answer:
the center of mass rises because the whole object rises up on the ramp thing so the center of mass rises
Hope it helps!
Explanation:
Answer:
724.3J/Kg.K
Explanation:
CHECK THE COMPLETE QUESTION BELOW
Compute the specific heat capacity at constant volume of nitrogen (N2) gas.and compare with specific heat of liquid water. The molar mass of N2 is 28.0 g/mol.
The specific heat capacity can be computed by using expression below
c= CV/M
Where c= specific heat capacity
M= molar mass
CV= molar hear capacity
Nitrogen is a diatomic element, the Cv can be related to gas constant with 5/2R
Where R= 8.314J/mol.k
Molar mass= 28 ×10^-3Kg/mol
If we substitute to the expression, we have
c= (5R/2)/(M)
=5R/2 × 1/M
=(5×8.314) /(2×28 ×10^-3)
=724.3J/Kg.K
Hence, the specific heat capacity at constant volume of nitrogen (N2) gas is
724.3J/Kg.K
The specific heat of liquid water is about 4182 J/(K kg) which is among substance with high specific heat, therefore specific heat of Nitrogen gas is 724.3J/Kg.K which is low compare to that of liquid water.