Answer:
171.5Watts
Explanation:
Given parameters:
Mass = 5kg
Distance = 28m
Time = 8s
Unknown:
Power = ?
Solution:
Power is the rate at which work is done;
Power =
Work done = force x distance = mg x d =
m is the mass
g is the acceleration due to gravity
d is the distance
Work done = 5 x 9.8 x 28 = 1372J
Power =
= 171.5Watts
Answer:
30 seconds
Explanation:
The formula for calculating acceleration is
( final velocity - inital velocity) ÷ time
If we enter the values, it would be (250 - 100) ÷ t = 5m/s^2
Now we need to know 't'
So we rearrange the equation to make t the subject.
(250-100) ÷ 5 = 30s
Answer:
It's Option D
Explanation:
Red line bounces off left side of black line.
Answer:
A. (b)
B. (a)
Explanation:
The electric dipole moment is the product of charge and the length of the dipole.
The torque on the dipole placed in the external electric field is given by
torque = p E sin A
where, p is the electric dipole moment, E is the electric field, A is the angle between the field and dipole moment.
When the dipole moment is parallel to the electric field, the net torque is zero and it is said to be in stable equilibrium.
When the dipole moment is anti parallel to the electric field, the net torque is zero but the dipole is in unstable equilibrium.
So, the option (b) is correct.
Teh energy is given by
U = - p E cos A
When the angle A is zero , the potential energy is negative and it is minimum.
Answer: the body is trained to wake up when the sun rises and get the energy from the sun and sleep and it is night on when the sun is not there. So when a watchman works at night there is no sun first of all to give him any kind of energy and secondly the body clock resists him waking up thus making him tired.
Explanation: