Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
Answer:
I think the answer is a
Explanation:
for it to be accurate has be to exactly 0.9 rad
it is not precise because the answer she is getting is different everytime and not even close. For instance,
It would have been precise if she had gotten 0.37 rad in every attempt. or 0.89 every attempt...
Answer:
1.195 m
2.8375 s
2.21433 rad/s
Explanation:
d = Distance = 2.39 m
N = Number of cycles = 8
t = Time to complete 8 cycles = 22.7 s
Radius would be equal to the distance divided by 2

The radius is 1.195 m
Time period would be given by

Time period of the motion is 2.8375 s
Angular speed is given by

The angular speed of the motion is 2.21433 rad/s
Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°