Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.
Answer:
a) a space in an atom where an electron is most likely to be found
Explanation:
Atomic orbital is the mathematical function which describes wave-like behavior of the electrons present in the atom.
It is used to calculate probability of finding the electron of the atom in any region around nucleus of the atom. Atomic orbital is the physical region or a three dimensional space where the probability of finding the electron is more than 90% which also means that the space where an electron is most likely to be found. They are boundless space and have definite energy.
Option A best describes atomic orbital.
Kc = [H3O+][HCO3-] / [H2CO3]
Remember that Kc is products over reactants. Also, you do not include liquid water in a Kc expression, since liquid water has no concentration.