Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
Answer:- 27.7 grams of
are produced.
Solution:- The balanced equation is:

let's convert the grams of each reactant to moles and calculate the grams of the product and see which one gives least amount of the product. This least amount would be the answer as the least amount we get is from the limiting reactant.
Molar mass of
= 207.2+2(126.90) = 461 gram per mol
let's do the calculations for the grams of the product for the given grams of each of the reactant:

= 

= 
From above calculations, NaI gives least amount of
, so the answer is, 27.7 g of
are produced.
Answer:
I have for Decompostion
Explanation:
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation: AB → A + B. In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction
Answer:
Given : No. Of moles = 1.5
To calculate : no. Of molecules =N
We know that moles = N / 6.022 x 10²³
Therefore, 1.5 x 6.022 x 10²³ = N
Hence N = 9.0330x 10²³ molecules