First, let us calculate the moles of solute or sodium
bicarbonate is in the 1 ml solution.
<span>moles = 1 mL * (1 g
/ 9 mL) = 0.11 moles</span>
The molar mass of sodium bicarbonate is 84 g/mol,
therefore the mass is:
mass = 0.11 moles * 84 g/mol
<span>mass = 9.33 g</span>
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
The empirical formula is the simplest form of the formula expressed in the lowest ratio. In this case, we just have to divide each subscript by the greatest common factor. Hence.
a. CN
b. P2O5
c.N2O5
d.NaCl
e. C9H20
f. BH3
g.K2Cr2O7
h.AlB3
i.CH
j.SiCl4
If there are 2 electrons in the same orbital, the spin numbers would be different for both of these 2 electrons. One would have an up spin and the other a down spin.