Answer:
Light moves at 300,000 kilometers per second, divide these and you get 500 seconds, or 8 minutes and 20 seconds this is an average number.
Explanation:
The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized
The minimum energy required to excite a hydrogen atom from its lowest energy level is 10.2 eV.
<h3>What is excitation?</h3>
The term excitation has to do with the promotion of an electron from a lower to a higher energy level.
In this case, we are dealing with the hydrogen atom having only one electron. Thus, the minimum energy required to excite a hydrogen atom from its lowest energy level is 10.2 eV.
Learn more about energy level:brainly.com/question/17396431
#SPJ1
The valence electron does the halogens possess are 7
- Valence electrons are found in the outermost energy level of an atom
- They are involved in the formation of chemical bonding with other atoms.
- The halogens elements are found in group 17 on the periodic table
- The halogens include fluorine, chlorine, bromine, iodine and astatine.
- They have seven valence electrons, so they are extremely reactive as they only need one more to fill their outer shell.
- By octet rule we can say that the electron with 8 outer most shell is full and stable.
Hence the halogens posses 7 valence electron
Learn more about the valence electron on
brainly.com/question/13552988
#SPJ4
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bond" such as metallic, covalent or ionic bonds and "weak bonds" or "secondary bond" such as Dipole-dipole interaction, the London dispersion force and hydrogen bonding.</span>