Answer:
Recall that the electric field outside a uniformly charged solid sphere is exactly the same as if the charge were all at a point in the centre of the sphere:

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

=![\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2} }{2R^{3} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bq%7D%7B4%5Cpi%20e_%7B0%7D%20%7D%20%5B%5Cfrac%7B1%7D%7BR%7D%20-%5Cfrac%7Br%5E%7B2%7D-R%5E%7B2%7D%20%20%7D%7B2R%5E%7B3%7D%20%7D%20%5D)
∴NOTE: Graph is attached
Hydrocarbons are compounds of hydrogen and carbon.
Photosynthesis is a process of nutrition in plants.
Thunder is a sound.
Lightning and electric eels are electrical phenomena in nature.
Answer:
The moon is 400x smaller but it's also 400x closer so it looks the same size even though it's not
Explanation: