Fe2O3 + 3CO --------> 2Fe + CO2
1 : 3 : 2 : 3
13.3 <--- 40 ------> 26.6 ---> 40 ( mol)
n = m/M
m CO2 = n.M = 13.3 . 40 = 532 ( g)
p/s : i hope that this will help ( cause i'm not really good at english :}}} )
Answer:
There are 1.51 x 1024 molecules of carbon dioxide in 2.50 moles of carbon dioxide.
Explanation:
Answer: The result is presented in proportion which gives a clearer understanding and accurate result.
Explanation: Percentage change in mass is the proportion of the initial mass of a substance changed after sometime. The results is presented as a percentage making it more accurate and can help to give future reference to weight calculations.
Change is Mass is the mass of a substance left after sometime mostly given in grams. It is not as accurate as percentage change in mass. It is generally better to show results in percentage change in mass as it gives a better understanding of what mass of a substance was lost after a given period or after application of energy like Heat or increased temperature.
Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Answer:
The best practices officers should use when securing a crime scene is option D
D. They should secure a larger area than the actual crime scene
Explanation:
Officers should secure the scene by limiting access to the scene and movement within the scene
Three layers of secure perimeter should be used by officers to secure a crime scene, with the smallest inside perimeter being the actual crime scene
Next to the crime scene, is an inner perimeter which is the designated meeting point/command post
The outer perimeter, which is the third outer layer is to keep onlookers, passerby, and nonessential personnel at safety and out of the actual crime scene.