"Fig is attacted with answer"
Answer:
a) d = 33.72 m
b)
= 26 m/s
c) β = 71.08°
Explanation:
a)
When an object is thrown into the air under the effect of the gravitational force, the movement of the projectile is observed. Then it can be considered as two separate motions, horizontal motion and vertical motion. Both motions are different, so that they can be handled independently.
Given data:
time = t = 4.00 s
Height = h = 20 m
Angle = θ = 60°
Horizontal distance = d = ?
Using 2nd equation of motion

-20 =
(4) + 0.5(-9.8)(4)²
(4) = 58.4
= 14.6 m/s
This is vertical component of velocity when the ball is on the roof. To calculate the Final velocity and horizontal component, we use
=
/ sinθ
= 14.6 / sin 60
= 16.86 m/s
=
cosθ
= 16.86 cos 60
= 8.43 m/s
To calculate the horizontal distance
d =
t
d = (8.43)(4)
d = 33.72 m
b)
We know the values of Landing angle, height of roof, time of flight. In part a, We calculate the landing velocity of the ball and also its horizontal and vertical component. As the ball followed the projectile path, and we know that in projectile motion the horizontal component of the velocity remain constant throughout his motion. So there is no acceleration along horizontal path.
So,
= 
but the vertical component of velocity vary with and there is an acceleration along vertical direction which is equal to gravitation acceleration g.
So,
g = (
-
) / t
9.8 = 14.6 -
) / 4
= 24.6 m/s
= 
= 
= 26 m/s
c)
cos β =
/ 
β = cos⁻¹ (8.43 / 26)
β = 71.08°
Newtons first law - Objects in the car at rest (The human) will remain at rest unless affected by an unbalanced force. Well the unbalanced force would be the crash and this would set the human in motion and they would ether fly out the car if not wearing a seat belt or if wearing one they would get bad whip lash
Newtons second law - With more mass requires more force, so since the human is pretty light or even if heavy in a big crash there will be so much more from it that this will send the human flying.
Newtons 3rd law - Objects A puts force onto objects b and object b excretes the same amount of force back onto object a, so in a crash the human would hit the car hard and the car would excrete the same amount of force back on the human which would really damage him/her
Answer:
A block of mass M = 5 kg is resting on a rough horizontal surface for which the coefficient of friction is 0.2. When a force F = 40N is applied, the acceleration of the block will be then (g=10ms
2 ).
Mass of the block=5kg
Coeffecient of friction=0.2
external applied force, F=40N
The angle at which the force is applied=30degree
So the horizontal component of force=Fcos30=40×
23 =20 3 N
While the uertical component of the force acting in upward direction=Fsin30=40× 21
=20N
The normal reaction from the surface (N)=mg−Fsin30=50−20=30N
So the ualue of limiting friction=μN=0.2×30=6N
Hence the net horizontal force on the block=Fcos30=μN=20
3
N−6N=28.64N
The horizontal acceleration of the block=
m
Fcos30−μN = 528.64
=5.73m/s 2
Because of Gravity, Basically a force so strong it constantly pulls us to the earth with 1 G (Maybe 100 pounds of force constantly pulling us to the earth)
Yes, think about the difference of swinging a bat and not hitting a ball. It's fairly easy right? Now, when you hit a ball with the bat, you will feel the bat sting your hands. That's the force the ball is exerting on the bat!