All of the above!
By analyzing the remains of fossilized organisms (such as old animal bones or plants), scientists can approximate what the organism might have looked like and the climate/environment it lived in -- and based on that, they can try to figure out how the Earth's surface has changed over time. Also, they can use the fossil to compare it to creatures that live now to see what has changed in that species over time.
Answer:
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas.
The covalent bond between two atoms can be polar or nonpolar. If the atoms are equal, the bond will be nonpolar (since no atom attracts electrons more strongly). But, if the atoms are different, the bond will be polarized towards the most electronegative atom, because it will be the atom that attracts the electron pair with more force. Then it will be polar.
It can occur in a molecule that the bonds are polar and the molecule is nonpolar. This occurs because of the geometry of the molecule, which causes them to cancel the different equal polar bonds of the molecule.
In carbon tetrachloride the bonds are polar, but the tetrahedral geometry of the molecule causes all four dipoles to cancel out and the molecule to be apolar.
Answer:
14 is the 1 st one and the 15 is 3
The answer is 18.02 grams
These two factors are:
*radiation coming into the Earth's atmosphere
*radiation going out the Earth's atmosphere
These two factors could be lumped into one natural phenomenon called the greenhouse effect. The Earth's atmosphere is a very unique characteristic in the solar system because it makes the planet livable. Without the atmosphere's work, the day would be too hot and the night would be too cold. The trapping of radiation, hence heat, keeps the overall temperature of the Earth.