Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain

Answer:
Cp= 0.44 J/g.C
This is heat capacity of metal.
Explanation:
From energy conservation
Heat lost by metal = Heat gain by water +Heat gain by calorimeter
Because here temperature of metal is high that is why it loose the heat.The temperature of water and calorimeter is low that is why they gain the heat.
final temperature is T= 30.5 C
We know that sensible heat transfer given as
Q= m Cp ΔT
m=Mass
Cp=Specific heat capacity
ΔT=Temperature difference
By putting the values
55 x Cp ( 99.5 - 30.5) = 40 x 4.184 ( 30.5- 21 ) + 10 x ( 30.5 - 21)
Cp ( 99 .5- 30.5) = 30.65
Cp= 0.44 J/g.C
This is heat capacity of metal.
To solve the problem it is necessary to apply the concepts related to Byle's Law and Avogadro's Law.
The ideal gas equation would help us find the final solution to the problem, defined by

Where,
T= Temperature of the gas
R = Universal as constant
n = number of moles
V = Volume
P = Pressure
For our case we have that the mass of Zn is 2.2g in moles would be
[/tex]

We know that 1 mole of hydrogen gas is proceed by 1 mole of zinc and the result is
, then Hydrogen can produce the same quantity,

Applying the previous equation we have that



Therefore the volume of hydrogen gas is collected is 0.829L
Answer:
Because the disturbances are in opposite directions for this superposition, the resulting amplitude is zero for pure destructive interference
Explanation:
Below are the 5 main indicators of chemical change.
Chemical change indicators:<span>
Color change
</span>Temperature change
Precipitate formation<span>
Odor
Bubble formation
I hope this helps!</span>