The electric field generated by a point charge is given by:

where

is the Coulomb's constant
Q is the charge
r is the distance from the charge
We want to know the net electric field at the midpoint between the two charges, so at a distance of r=5.0 cm=0.05 m from each of them.
Let's calculate first the electric field generated by the positive charge at that point:

where the positive sign means its direction is away from the charge.
while the electric field generated by the negative charge is:

where the negative sign means its direction is toward the charge.
If we assume that the positive charge is on the left and the negative charge is on the right, we see that E1 is directed to the right, and E2 is directed to the right as well. This means that the net electric field at the midpoint between the two charges is just the sum of the two fields:
Power is the rate work is usually done in.
Walk out. If it's denser than air, it'll settle to the bottom
Explanation:
A projectile (Cannon ball) is launched at an angle to the horizontal and rises up to a peak while moving horizontally. When it reaches the peak, the projectile starts to fall.
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)