Initial velocity (Vi) = 25 m/s
acceleration (a) = 
time interval (t) = 5 sec
let us assume that final velocity after 5 sec be Vf
As acceleration is constant, we can apply the the equation of motion with constant acceleration i.e. 
Hence, 
so, the velocity of bicyclist will be 5 m/s after 5 sec
<span>The answer is The conductance of a conductor is inversely
proportional to the cross-sectional area of the conductor.</span>
<span>Conductance is directly related to the ease offered by any material to the passage of electric current. Conductance is the opposite of resistance. The higher the conductance, the lower the resistance and vice versa, the greater the resistance, the less conductance, so both are inversely proportional</span>
Hello friend!!
We know that kinetic energy is the energy possessed due to the motion of the object. And we know if the object is in a fast motion then the temperature would be high, whereas if the object is slow in motion then it will have lower temperature. So we know that the kinetic energy is indirectly related to temperature.From our knowledge we can conclude that HIGHER THE TEMPERATURE, HIGHER THE KINETIC ENERGY and LOWER THE TEMPERATURE, LOWER THE KINETIC ENERGY.
Hence, the answer to your question here is,a.kinetic energy, temperature, and thermal energy increase.
Hope it helps!!All the best!!
Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:
