Answer:
285g of fluorine
Explanation:
To solve this problem we need to find the mass of Freon in grams. Then, with its molar mass we can find moles of freon and, as 1 mole of Freon, CCl₂F₂, contains 2 moles of fluorine, we can find moles of fluorine and its mass:
<em>Mass Freon:</em>
<em>2.00lbs * (454g / 1lb) = </em>908g of Freon
<em>Moles freon -Molar mass: 120.91g/mol- and moles of fluorine:</em>
908g of Freon * (1mol / 120.91g) =
7.5 moles of freon * (2moles Fluorine / mole Freon): 15 moles of fluorine
<em>Mass fluorine -Atomic mass: 19g/mol-:</em>
15 moles F * (19g / mol) =
<h3>285g of fluorine</h3>
Thomson<span> is the scientist who designed an experiment that enabled the first successful detection of an individual subatomic particle. </span>J.J. Thomson<span> (Sir </span>Joseph John Thomson<span>, 1856-1940), who demonstrated in 1897 that "cathode rays" consisted of negatively-charged particles, later named electrons.</span>
Answer:
<em>To calculate the average atomic mass, multiply the fraction by the mass number for each isotope, then add them together.</em>
<em>hope this helps</em><em> </em><em><</em><em>3</em>
Answer:
liquid
gas
Explanation:
liquid has an indefinite shape
gas has an indefinite shape