Answer:
Percent error = 25%
Explanation:
Given data:
Measured density of water = 1.25 g/mL
Accepted density value of water = 1 g/mL
Percent error = ?
Solution:
Formula:
Percent error = (measured value - accepted value / accepted value) × 100
Now we will put the values in formula:
Percent error = (1.25 g/mL - 1 g/mL /1 g/mL )× 100
Percent error = (0.25 g/mL /1 g/mL )× 100
Percent error = 0.25 × 100
Percent error = 25%
The likely thing which happens when two atoms of this element move toward each other is covalent bonding.
<h3>What is Covalent bonding?</h3>
This involves the atoms of element sharing electrons in order to achieve a stable octet configuration.
The element is oxygen which has an atomic number of 8 and needs two electrons to complete its outermost shell which results in the formation of two covalent bonds.
Read more about Covalent bonding here brainly.com/question/3447218
#SPJ1
Answer:
252.68 K or -20.46 °C
Explanation:
According to Gay-Lussac's Law, "Pressure and Temperature at given volume are directly proportional to each other".
Mathematically,
P₁ / T₁ = P₂ / T₂ ---- (1)
Data Given:
P₁ = 30.7 kPa
T₁ = 0.00 °C = 273.15 K
P₂ = 28.4 kPa
T₂ = <u>???</u>
Solving equation for T₂,
T₂ = P₂ T₁ / P₁
Putting values,
T₂ = 28.4 kPa × 273.15 K / 30.7 kPa
T₂ = 252.68 K or -20.46 °C
<em>Transparent because you can see right through it </em>
Answer:
OptionA. 2C4H10 + 13O2 —> 8CO2 + 10H20
Explanation:
Butane burns is air (O2) according to the equation:
C4H10 + O2 —> CO2 + H20
Considering the equation, it is evident that it not balanced. Now let us balance the equation as shown below;
There are a total of 4 carbon atoms on the left and 1 carbon atom on the right. It can be balanced by putting 4 in front of CO2 as shown below:
C4H10 + O2 —> 4CO2 + H20
Next, there are 10 hydrogen atoms on the left and 2 hydrogen atoms on the right. Therefore to balance it, put 5 in front of H2O as shown below:
C4H10 + O2 —> 4CO2 + 5H20
Now, there are a total of 13 oxygen atoms on the right and 2 at the left. To balance it, put 13/2 in front of O2
as shown below
C4H10 + 13/2O2 —> 4CO2 + 5H20
Now we multiply through by 2 clear off the fraction and we obtained:
2C4H10 + 13O2 —> 8CO2 + 10H20