1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
3 years ago
8

In a particular experiment to study the photoelectric effect, the frequency of the incident light and the temperature of the met

al are held constant. Assuming that the light incident on the metal surface causes electrons to be ejected from the metal, what happens if the intensity of the incident light is increased?
Physics
2 answers:
Novosadov [1.4K]3 years ago
7 0

Answer:

Explanation:

When a light beam of suitable frequency falls on metal surface, the electrons from the metal surface ejects, this phenomenon is called photo electric effect and the particular minimum frequency is called cut off frequency or threshold frequency.

When the intensity of incident radiation increases, the photo electric current also increases.  

mixer [17]3 years ago
5 0

Answer:

The kinetic energy of the ejected electrons increases.

Explanation:

As we know that electrons are only ejected from a metal surface if the frequency of the incident light increases the work function of the metal. If the frequency of the incident light is less than the work function of the metal no matter how intense the beam the electrons will not be ejected from the surface.

Using conservation of energy principle we have

E_{incident}=h\nu +\frac{1}{2}mv^{2}

If we increase the intensity  of incident light the term on the LHS of the above equation increases this increase appears in the kinetic energy term in RHS of the equation since h\times \nu remains constant.

You might be interested in
What is one way to induce an electric current
Lorico [155]
<span>1.an electric is induced when you move a magnet through a coil wire

2.a greater electric current is induced if you add more loops of wire</span>
8 0
3 years ago
An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, fil
Anestetic [448]

Answer:

The fraction of its volume inside liquid  is increased .

Explanation:

According to principle pf floatation , an object floats on the surface of water

when the weight of  liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .

In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid  is increased .

4 0
2 years ago
What’s the answer to question 12 please
matrenka [14]

Answer:

C) amplitude

Explanation:

"The amplitude is a measure of the strength or intensity of the wave. For example, when looking at a sound wave, the amplitude will measure the loudness of the sound. The energy of the wave also varies in direct proportion to the amplitude of the wave."-Ducksters

7 0
3 years ago
Compute the expected shell-model quadrupole moment of 209Bi () and compare with the experimental value, - 0.37 b
Over [174]

Answer:

0.22 b

Explanation:

Quadrupole moment of the nucleon is,

Q=-\frac{2j-1}{2(j+1)}\frac{3}{5}R^{2}

And also,

R^{2}=R^{2} _{0}A^{\frac{2}{3} }

And, R _{0}=1.2\times 10^{-15}m

Now,

Q=-\frac{2j-1}{2(j+1)}\frac{3}{5}R^{2} _{0}A^{\frac{2}{3} }

For Bismuth j=\frac{9}{2} and A is 209.

Q=-\frac{2\frac{9}{2} -1}{2(\frac{9}{2} +1)}\frac{3}{5}(1.2\times 10^{-15}) ^{2}(209)^{\frac{2}{3} }\\Q=0.628\times 35.28\times 10^{-30} \\Q=22.15\times 10^{-30} m^{2} \\Q=0.2215\times 10^{-28} m^{2} \\Q=0.22 barn

Therefore, the expected value of quadrupole is 0.22 b which is quite related with experimental value which is 0.37 b

3 0
3 years ago
A charged particle moves through a magnetic field. In which situation is the magnetic force zero?
maksim [4K]

Answer:

The answer is the option a.

Explanation:

We know that magnetic force (Fm) is defined as

Fm = q (v x B)

Where q is a the value of the charge, v is the velocity of the charge and B is the value of the magnetic field.

"v x B" is defined as the cross product between the vectors velocity and magnetic field, and if the angle between them is thetha < 180°, then, the cross product is

v x B = vBsin (thetha)

So,

Fm = qvBsin (thetha)

And, in case in which v and B are parallel vectors, thetha is zero, and,

sin (thetha)=sin (0) = 0

So, Fm=0

7 0
3 years ago
Other questions:
  • The science that uses principles of physics to understand the human machine is called
    7·1 answer
  • Switches, flashers, and similar devices controlling transformers and electronic power supplies shall be rated for controlling in
    5·1 answer
  • What do most scientists think causes Bovine Spongiform Encephalopathy (Mad Cow Disease)?
    6·2 answers
  • Monochromatic light of variable wavelength is incident normally on a thin sheet of plastic film in air. The reflected light is a
    10·1 answer
  • Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels
    11·1 answer
  • two bowling balls each have a mass of 8kg. if they are 2 m apart, what is the gravitational force between them?
    15·1 answer
  • The moon Phobos orbits Mars
    11·1 answer
  • A box of mass 5.0 kg is initially at rest. A 500 N force causes it to move horizontally through a
    7·2 answers
  • What happens if an object is in orbit and
    11·1 answer
  • What is the largest structure people have put into space?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!