Hi there, the correct answer is C. Reactivity. I know this is the correct answer because I took this quiz recently. Color, boiling point, and density are all examples of physical properties.
F=ma
Tension - weight = mass x acceleration
T - 5(9.81) = 5 x 1
T = 5 + 5(9.81)
T = 54.05 N
T ≈ 54 N
Answer:
a) k = 120 N / m
, b) f = 0.851 Hz
, c) v = 1,069 m / s
, d) x = 0
, e) a = 5.71 m / s²
, f) x = 0.200 m
, g) Em = 2.4 J
, h) v = -1.01 m / s
Explanation:
a) Hooke's law is
F = k x
k = F / x
k = 24.0 / 0.200
k = 120 N / m
b) the angular velocity of the simple harmonic movement is
w = √ k / m
w = √ (120 / 4.2)
w = 5,345 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 5.345 / 2π
f = 0.851 Hz
c) the equation that describes the movement is
x = A cos (wt + Ф)
As the body is released without initial velocity, Ф = 0
x = 0.2 cos wt
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum for sin wt = ±1
v = A w
v = 0.200 5.345
v = 1,069 m / s
d) when the function sin wt = -1 the function cos wt = 0, whereby the position for maximum speed is
x = A cos wt = 0
x = 0
e) the acceleration is
a = d²x / dt² = dv / dt
a = - Aw² cos wt
The acceleration is maximum when cos wt = ± 1
a = A w²
a = 0.2 5.345
a = 5.71 m / s²
f) the position for this acceleration is
x = A cos wt
x = A
x = 0.200 m
g) Mechanical energy is
Em = ½ k A²
Em = ½ 120 0.2²
Em = 2.4 J
h) the position is
x = 1/3 A
Let's calculate the time to reach this point
x = A cos wt
1/3 A = A cos 5.345t
t = 1 / w cos⁻¹(1/3)
The angles are in radians
t = 1.23 / 5,345
t = 0.2301 s
Speed is
v = -A w sin wt
v = -0.2 5.345 sin (5.345 0.2301)
v = -1.01 m / s
i) acceleration
a = -A w² sin wt
a = - 0.2 5.345² cos (5.345 0.2301)
a = -1.91 m / s²
Answer:
l don't now but l think the is 160
Explanation:
160 or 810
Answer:
xcritical = d− m1
/m2
( L
/2−d)
Explanation: the precursor to this question will had been this
the precursor to the question can be found online.
ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces
smallest possible value of x such that the bar remains stable (call it xcritical)
∑τA = 0 = m2g(d− xcritical)− m1g( −d)
xcritical = d− m1
/m2
( L
/2−d)