Answer:
Frequency of incident light = 995×10 12
Explanation:
hope this helped you :)
In component form, the displacement vectors become
• 350 m [S] ==> (0, -350) m
• 400 m [E 20° N] ==> (400 cos(20°), 400 sin(20°)) m
(which I interpret to mean 20° north of east]
• 550 m [N 10° W] ==> (550 cos(100°), 550 sin(100°)) m
Then the student's total displacement is the sum of these:
(0 + 400 cos(20°) + 550 cos(100°), -350 + 400 sin(20°) + 550 sin(100°)) m
≈ (280.371, 328.452) m
which leaves the student a distance of about 431.8 m from their starting point in a direction of around arctan(328.452/280.371) ≈ 50° from the horizontal, i.e. approximately 431.8 m [E 50° N].
Answer:
The speed it reaches the bottom is

Explanation:
Given:
, 
Using the conservation of energy theorem


, 
![m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2](https://tex.z-dn.net/?f=m%2Ag%2Ah%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%28r%2Aw%29%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%2A%5B%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Ar%5E2%5D%2Aw%5E2)


Solve to w'




