Given: Change of x is 35.4m, Velocity Final=7.10 m/s, Velocity Initial=0m/s
Find: Acceleration
Analysis:
Vf²=Vi²+2aΔx (Velocity final squared equals Velocity initial squared plus 2 times acceleration times change of x)
(7.10 m²/s)²=(0 m/s)²+2a(35.4 m)
50.41 m/s²=(70.8 m)a
a=0.712 m/s²
Answer:
Plane will 741.6959 m apart after 1.7 hour
Explanation:
We have given time = 1.7 hr
So if we draw the vectors of a 2d graph we see that the difference in angles is = 
Speed of first plane = 730 m/h
So distance traveled by first plane = 730×1.7 = 1241 m
Speed of second plane = 590 m/hr
So distance traveled by second plane = 590×1.7 = 1003 m
We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 58.6.
Using the law of cosine,
representing the distance between the planes, we see that:

r = 741.6959 m
Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where
is the initial velocity.
Solving for
we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time
since it had reached the highest point, the ball has traveled downwards and the velocity
it has gained is
,
and we are told that this is twice the initial velocity
; therefore,

which gives

Thus, the total time taken to reach velocity
is


This
, we are told, is 36 seconds; therefore,

and solving for
we get:



which from the options given is choice e.
If you illustrate the problem, you will somewhat come up with the figure shown. The missing value is the hypotenuse of the right triangle. Using the pythagorean theorems, the value is determined to be
x = √(0.7^2 + 2.4^2)
x = 2.5 km
2.5 km is the magnitude of the distance. If you want to incorporate the displacement, the answer is reported as
2.5 km, southeast. The direction is determined from the starting point to the endpoint.