Answer:
a)
b)
Explanation:
a) Let's use the constant velocity equation:

- v is the speed of the muon. 0.9*c
- c is the speed of light 3*10⁸ m/s


b) Here we need to use Lorentz factor because the speed of the muon is relativistic. Hence the time in the rest frame is the product of the Lorentz factor times the time in the inertial frame.


v is the speed of muon (0.9c)
Therefore the time in the rest frame will be:



No we use the value of Δt calculated in a)

I hope it helps you!
44.64m
Explanation:
Given parameters:
Mass of the car = 1500kg
Initial velocity = 25m/s
Frictional force = 10500N
Unknown:
Distance moved by the car after brake is applied = ?
Solution:
The frictional force is a force that opposes motion of a body.
To solve this problem, we need to find the acceleration of the car. After this, we apply the appropriate motion equation to solve the problem.
-Frictional force = m x a
the negative sign is because the frictional force is in the opposite direction
m is the mass of the car
a is the acceleration of the car
a =
=
= -7m/s²
Now using;
V² = U² + 2as
V is the final velocity
U is the initial velocity
a is the acceleration
s is the distance moved
0² = 25² + 2 x 7 x s
0 = 625 - 14s
-625 = -14s
s = 44.64m
learn more:
Velocity problems brainly.com/question/10932946
#learnwithBrainly
Answer:
Explanation:
If you look closely, force 1 does not reach 0.2 until 0.4 force 2 reaches 0.2 at about 0.2 - hope that made sense :P
Answer:
The windward side is that side which faces the prevailing wind (upwind), whereas the leeward, or "lee" side, is the side sheltered from the wind by the mountain's very elevation (downwind)
i think its a, good luck on your test