The answer is: none of the above.
Explanation:
When light reflects from a surface, the frequency, wavelength, and speed do not change. They remain the same.
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
An ice cube would transfer heat to another object whose temperature
is lower than zero°C (32°F).
A block of "dry ice" is sitting there at a temperature of -78°C (-109°F).
An ice cube helps to melt dry ice nice and fast.
If you could find a block of solid nitrogen, its temperature would be
63K (-210°C, -346°F). An ice cube would transfer heat to that baby
so fast that it would instantly boil.
Answer:
20 °C
Explanation:
Ideal gas law:
PV = nRT
Rearranging:
P / T = nR / V
Since n, R, and V are constant:
P₁ / T₁ = P₂ / T₂
488.2 kPa / T = 468 kPa / 281.15 K
T = 293.29 K
T = 20.1 °C
Rounded, the temperature was 20 °C.