Answer:
D would be it
Explanation:
cause none of the rest Makes sense to the book of the picture and I'm 100% sure =)
Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
Explanation:
By using v=( f )x( lambda )
v= 45 s^-1 x 3 m
Therefore v = 135 ms^-1
Answer:
Given:
Thermal Kinetic Energy of an electron, ![KE_{t} = \frac{3}{2}k_{b}T](https://tex.z-dn.net/?f=KE_%7Bt%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7Dk_%7Bb%7DT)
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:
![\lambda_{e} = \frac{h}{p_{e}}](https://tex.z-dn.net/?f=%5Clambda_%7Be%7D%20%3D%20%5Cfrac%7Bh%7D%7Bp_%7Be%7D%7D)
(1)
where
h = Planck's constant = ![6.626\times 10^{- 34}m^{2}kg/s](https://tex.z-dn.net/?f=6.626%5Ctimes%2010%5E%7B-%2034%7Dm%5E%7B2%7Dkg%2Fs)
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy
![\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dm_%7Be%7Dv_%7Be%7D%5E%7B2%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7Dk_%7Bb%7DT)
![}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}](https://tex.z-dn.net/?f=%7Dv_%7Be%7D%20%3D%20%5Csqrt%7B2%5Cfrac%7B%5Cfrac%7B3%7D%7B2%7Dk_%7Bb%7DT%7D%7Bm_%7Be%7D%7D%7D)
![}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}](https://tex.z-dn.net/?f=%7Dv_%7Be%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B3%5Ctimes%201.38%5Ctimes%2010%5E%7B-%2023%7D%5Ctimes%201800%7D%7B9.1%5Ctimes%2010_%7B-%2031%7D%7D%7D)
(2)
Using eqn (2) in (1):
![\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm](https://tex.z-dn.net/?f=%5Clambda_%7Be%7D%20%3D%20%5Cfrac%7B6.626%5Ctimes%2010%5E%7B-%2034%7D%7D%7B9.1%5Ctimes%2010_%7B-%2031%7D%5Ctimes%202.86%5Ctimes%2010%5E%7B5%7D%7D%20%3D%202.55%20nm)
Now, to calculate the de-Broglie wavelength of proton,
:
![\lambda_{p} = \frac{h}{p_{p}}](https://tex.z-dn.net/?f=%5Clambda_%7Bp%7D%20%3D%20%5Cfrac%7Bh%7D%7Bp_%7Bp%7D%7D)
(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy
![\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dm_%7Bp%7Dv_%7Bp%7D%5E%7B2%7D%20%3D%20%5Cfrac%7B3%7D%7B2%7Dk_%7Bb%7DT)
![}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}](https://tex.z-dn.net/?f=%7Dv_%7Bp%7D%20%3D%20%5Csqrt%7B2%5Cfrac%7B%5Cfrac%7B3%7D%7B2%7Dk_%7Bb%7DT%7D%7Bm_%7Bp%7D%7D%7D)
![}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}](https://tex.z-dn.net/?f=%7Dv_%7Bp%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B3%5Ctimes%201.38%5Ctimes%2010%5E%7B-%2023%7D%5Ctimes%201800%7D%7B1.6726%5Ctimes%2010_%7B-%2027%7D%7D%7D)
(4)
Using eqn (4) in (3):
![\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm](https://tex.z-dn.net/?f=%5Clambda_%7Bp%7D%20%3D%20%5Cfrac%7B6.626%5Ctimes%2010%5E%7B-%2034%7D%7D%7B1.6726%5Ctimes%2010_%7B-%2027%7D%5Ctimes%206.674%5Ctimes%2010%5E%7B3%7D%7D%20%3D%205.94%5Ctimes%2010%5E%7B-%2011%7D%20m%20%3D%200.0594%20nm)
1. First blank is A. Conductors
Second blank is D. Insulators
2. C. Heat