Combine the number of its Protons and Neutrons and you will have its atomic mass.
He thought elements that haven't been discovered belonged in the place of the gap. He could also use the atomic mass of the missing elements
Answer:
Explanation:
Not Many
1 mol of CO has a mass of
C = 12
O = 16
1 mol = 28 grams.
1 mol of molecules = 6.02 * 10^23
x mol of molecules = 3.14 * 10^15 Cross multiply
6.02*10^23 x = 1 * 3.14 * 10^15 Divide by 6.02*10^23
x = 3.14*10^15 / 6.02*10^23
x = 0.000000005 mols
x = 5*10^-9
1 mol of CO has a mass of 28
5*10^-9 mol of CO has a mass of x Cross Multiply
x = 5 * 10^-9 * 28
x = 1.46 * 10^-7 grams
Answer: there are 1.46 * 10-7 grams of CO if only 3.14 * 10^15 molecules are in the sample
Answer:
37.25 grams/L.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(volume of the solution (L))</em>
<em></em>
∵ no. of moles of KCl = (mass of KCl)/(molar mass of KCl)
∴ M = [(mass of KCl)/(molar mass of KCl)]/(volume of the solution (L))
∴ (mass of KCl)/(volume of the solution (L)) = (M)*(molar mass of KCl) = (0.5 M)*(74.5 g/mol) = 37.25 g/L.
<em>So, the grams/L of KCl = 37.25 grams/L.</em>
Elements are like loners, compounds are like couples, and mixtures are like a group of friends that can also have couples (compounds)