Answer:
Explanation:
The formula to determine the size of a capillary tube is
h = 2•T•Cos θ / r•ρ•g
Where
h = height of liquid level
T = surface tension
r = radius of capillary tube
ρ = density of liquid
θ = angle of contact = 0°
g =acceleration due to gravity=9.81m/s²
The liquid is water then,
ρ = 1000 kg / m³
Given that,
T = 0.0735 N/m
h = 0.25mm = 0.25 × 10^-3m
Then,
r = 2•T•Cos θ / h•ρ•g
r = 2 × 0.0735 × Cos0 / 2.5 × 10^-3 × 1000 × 9.81
r = 5.99 × 10^-3m
Then, r ≈ 6mm
The radius of the capillary tube is 6mm
So, the minimum size is
Volume = πr²h
Volume = π × 6² × 0.25
V = 2.83 mm³
The minimum size of the capillary tube is 2.83mm³
Answer:
y = 4 Sin (2πt)
Explanation:
Amplitude, A = 4
frequency, f = 1
Wave function is given by
y = A sinωt
where, ω is angular frequency
ω = 2 π f = 2 π x 1 = 2π
So, the desired wave function
y = 4 Sin (2πt)
Answer:
W = 19.845 J
Explanation:
Work is defined as W = Fdcos
, where F is the force exerted and d is the distance. Because the direction the ball is falling is the same direction as the force itself,
= 0 deg, and since cos(0) = 1, this equation is equivalent to W = Fd. In this case, the force exerted is the weight force, which is equivalent to m * g. Substituting you get:
W = mgd = 0.810 kg * 9.8 m/s^2 * 2.5m
W = 19.845 J
False, Carbon usually forms four covalent bonds.
Mass and volume are the 2 factors to determine density